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1. INTRODUCTION

Volatile halogenated organic compounds, particularly those containing Cl or Br, are of considerable
environmental importance because of their stratospheric ozone depletion capabilities, their contributions
to the global greenhouse effect, and their utility as indicators of biological inputs in biogeochemical studies
of marine and atmospheric systems [1-3]. Concems are also growing that chlorinated organics are causing
cancer in adults and adverse health and reproductive effects in the offspring of both humans and wildlife
[4]. As a result, the development of monitoring methods for halogenated species has received increased

attention.

A common method presently used to determine halogenated species under ambient conditions is
cryogenic preconcentration of the sample followed by gas chromatography with electron capture detection
(GC-ECD) [3,5,6]. Reifenhduser and Heumann have reported parts-per-trillion (ppt) level sensitivities for
CHBr; and other Br-containing compounds using this approach [3,5]. Absolute limits of detection (LODs)
using GC-ECD are on the order of 1-100 pg of Br, depending on the compound [5,6). Despite high
sensitivity, the GC-ECD technique requires extensive sample manipulation and a long measurement cycle

(approximately 1 hr).

Laser-based methods offer the advantages of high sensitivity and speed for the real-time monitoring
of halogenated species in situ or remote. Cool and coworkers have reported the study of a resonance-
enhanced multiphoton ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique for the
monitoring of C,Cl, (TCE) in combustion environments [7]. Brewer and coworkers employed a pump-
probe scheme to measure the quantum yields for atomic iodine production for a number of alkyl halides
and HI [8]. One laser operating at 248 nm was used for photolysis while another tuned at 304.7 or
306.7 nm was used for a two-photon excitation involving the 5p*6p 2D°5,2 « 5p° 2P°3,2 and 5p*6p
2D°3,2 « 5p° P°, p transitions, respectively. The excited atoms decay to the ground state first by
emission of an infrared photon, 2D°5 n < 2P3 1 OF 2D°3 n 2P1 132> and then by emission of a vacuum
ultraviolet (VUV) photon which is detected. Using a similar pump/probe technique, Jeffries, Raiche, and
Jusinski have described a two-laser atomization/laser-induced fluorescence (LA/LIF) technique suitable
for measuring total chlorine in, for example, incinerator effluent [9]. Jeffries and Sappey have also
employed two-photon LIF and stimulated emission (SE) to monitor ground state Cl atoms in an rf plasma
etching environment [10]. Their excitation scheme was similar to Selwyn, Batson, and Sawin [11] and




employed excitation of the 3p*4p 4S°3,2 « 3p° 2P°3,2,1 p at 233 nm. Fluorescence to the 3p*asCP)

multiplet was then monitored near 750 nm.

Methods employing a one-color laser photofragmentation/REMPI or LIF fragment detection (PF/FD)
scheme are an effective means for detecting a common substituent from a class of precursor species, and
have been employed to detect various functionalities, including Cl [7,9,12], Br [3], and NO, [14-16].
Arepalli and coworkers employed tunable radiation ranging from 230 to 245 nm for the (2+1) REMPI
detection of Cl 3p° 2P"3 p and Cl 3p° 2P°1 p atoms from photolysis of various chlorinated precursors in
a low-pressure environment (approximately 2 Torr) [12]. For HCl and DCI, a detection sensitivity of
better than 10'0 molecules/cm® was achieved. Using the same technique, Arepalli and coworkers also
detected Br 4p> 2P°; , and Br 4p° %P°; , atoms in the wavelength region of 240-285 nm [13].

Recently, we have shown that laser photofragmentation with subsequent REMPI detection when
coupled with molecular beam TOF mass spectrometry can be used to detect atmospheric NO and nitro-
containing vapors with both high sensitivity and selectivity [14]. A single laser operating at 226 or
193 nm was employed for both the photolysis of the parent molecule and exciting the resulting NO
fragment. NO was detected by both (1+1) REMPI or LIF via its A2Z*-X2[1(0,0) band near 226 nm, or
by (1+1) REMPI via its A2ZZ*-X2I1 (3,0), BAI1-X211 (7,0) and/or D?Z*-X2I1(0,1) bands near 193 nm. At
226 nm, NO™ ions were produced almost at the exclusion of any other ions such that mass spectrometric
detection was virtually unnecessary. More recently, we reported the development of a laser-induced
photofragmentation/photoionization (PF/PI) technique employing a miniature pair of electrodes for the real-
time measurement of ambient nitrogen oxides [15]. Similar studies on NO/NO, have been performed by
Ledingham and coworkers [16]. While only a single laser operating near 226 nm was used as both the
photolysis and photoionization source, our studies demonstrated high sensitivity for several compounds,

even with only 10-pJ laser pulse energies.

In this report, we describe the extension of the PF/(LIF, REMPI) techniques and a novel laser
photofragmentation with subsequent stimulated emission technique (PF/SE) to the detection of volatile
brominated compounds. The three techniques have been investigated for their utility in measuring trace
levels of volatile brominated species under ambient conditions. The output of a single laser is tuned to
a strong two-photon 4p*5p 4D°3/2 « 4p° 2P°3,2 transition of Br at 260.634 nm. The Br atoms are
subsequently detected by either (2+1) REMP], or by LIF or SE by monitoring the 4p45p 4D°3 n = 4p45s
4P3,2 sp transitions at 844 and 751 nm, respectively. For REMPI, nonselective (total) ion detection is




employed. The REMPI, LIF, or SE signals observed at the two-photon resonance wavelength are used
to quantify the total Br content of the sample vapor. To our knowledge, this is the first time that
ionization, fluorescence, and SE methods have been applied to the detection of Br atoms and brominated

species in the same study. It is also the first time that SE of Br atoms has been reported.
2. EXPERIMENTAL

Presented in Figure 1 is a schematic of the experimental apparatus. The sample cell utilized was a
six-way stainless steel cross with 2.75-in conflat flanges. MgF, windows mounted on the cell provided
optical access for photolysis, REMPI, LIF, and SE. An excimer-pumped dye laser system (Lumonics,
HYPER EX-400, HYPER DYE-300, and HYPER TRAK-1000) operating with coumarin 500 dye and with
a beta barium borate frequency doubling crystal was used to provide up to 200-uJ pulses near 260 nm.
At this wavelength, the frequency doubled laser linewidth is estimated to be 0.11 cm™! from the reported
value of 0.076 cm™! for the fundamental (Lumonics). Pulse energies were monitored between
measurements using a Joulemeter (Molectron Detector Inc., J4-05). The laser output was directed by
prisms to the sampling cell. Focusing of the laser beam was accomplished using a 150-mm lens (suprasil)
external to the cell.

For the REMPI studies, two planar stainless steel electrodes served as ion/electron detectors. Each
is approximately 1.5 cm? in area and separated by 0.63 cm. Electrical contact to the electrodes (used for
biasing and for signal collection) was accomplished through a plate mounted to one of the arms on the
cell. The collection voltages ranged from O to 400 V. The laser beam passed between the electrodes and
was focused in the center of the electrode length to optimize ion/electron collection. For the LIF studies,
the fluorescence was viewed normal to the photolysis laser axis and was monitored with a photomultiplier
tube (PMT) (Hamamatsu, R955) equipped with band pass filters centered at either 844 or 750 nm (fwhm
~ 10 nm). The PMT voltage ranged from -1,000 to —1,200 V. For the SE studies, the emission was
viewed coaxial and in the forward direction of the laser beam, and was detected 1 m from the cell with
either a monochromator (ISA-H1061)/PMT combination or filtered PMT. The PMT and filters were the
same as those used for LIF detection. The beam waist in the focal region is estimated to be 40 pm in
diameter (three times the diffraction limit) resulting in a maximum fluence of 6 x 108 W/em?.  An
estimation of the effective volume probed by the laser is approximately 2.5 x 107® cm? (equal to 2-mm
path length and 1.3 x 10~>-cm? focal area).
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Figure 1. Schematic of experimental apparatus.

Samples were prepared by serial dilution of standard gases (CH,Br) or were sampled at their room
temperature vapor pressures (CHBr;, CHBr,Cl) as trace species in buffer gases (air, N,). Pressures were
measured with a barocel pressure sensor (Edwards/Datametrics 600A-1000T) interfaced to a recorder
(Edwards/Datametrics 1500). They ranged from 1 to 760 Torr total pressure in the measurement cell.
The samples were flowed through the photolysis cell at 500 cm>/min nominally to prevent build-up of
photolysis products. The photolysis cell volume was estimated to be 350 cm®.

At high concentrations, a sustained period of flushing with N, between samples was necessary to

minimize both jonization and fluorescence signals resulting from adsorbed molecules from previous runs
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on the cell walls. The background was generally more of a problem in the ionization measurements and
may be due to ionization of either the parent molecule or a fragment other than Br. Experimentally, it
was observed that the magnitude of the background near 260 nm represented as much as 50% of the total
ionization signal when the laser is resonance with the Br transition, indicating that alternate ionization
processes originating from the parent molecule and/or other daughter fragments are operative. Such high
background signals were limited to relatively low laser pulse energies.

The PF/REMPI measurements were performed using +400 V on the collection electrodes, the same
as that used for PF/REMPI studies of nitrogen oxide species [15]. REMPI signals from the detection
electrodes were amplified using a current amplifier (Keithley 427, gain 10°-107 V/A, time constant
0.01 ms) and then sampled by a boxcar averager. The amplifier was connected as closely as possible to
the collection electrode output to minimize radio-frequency pick-up along the signal cable. The REMPI,
LIF, and SE signals were viewed in real-time on a 125-MHz digital oscilloscope (LeCroy 9400). The
boxcar output was acquired by a personal computer for storage and subsequent data analysis. Analytical
sensitivity determinations were performed at 10-Hz laser repetition rate using a boxcar gate of 15 ps for
REMPI and 30 ns for LIF and SE with 100-shot averaging. The noise in this study was defined as the
standard deviation of 16 independent measurements of the background signal off resonance when N, was
flowed through the cell.

3. RESULTS/DISCUSSION

The physical process underlying our approach for the detection of brominated compounds may be
understood by referring to Figure 2, which shows a partial potential energy level diagram for the Br atom.
In our approach, the precursor molecule is first photofragmented yielding the Br atom in its ground
(2P°3 1) and/or first excited (2P°1 ,2) state, and its corresponding companion radical (R), via the process

R-Br — R + Br(®P%, ;).

The Br atoms are then detected by (2+1) REMPI via the 4p*Sp “D°,, energy level, or by LIF or SE
involving the 4p*5p “D°, — 4p*ss (*P5,, *Ps,) transitions near 844 and 751 nm, respectively. For
brominated compounds, the characteristic absorption spectrum in the 230-280-nm region is ascribed to
the n—>c* transition localized on the Br atom. The Br atom is bound to the main skeletal portion of the
molecule with a bond energy ranging from 46.34 Kcal/mole for Br-Br to 87.4 Kcal/mole for H-Br
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(1 Kcal/mole = 349.76 cm"l) [17]. For CF;Br and RH,Br,_, (x = 1,2), the Br atom is bound to the
carbon atom by approximately 70 Kcal/mole. Thus, the parent (analyte) molecules are photofragmented

and Br atoms are generated in this wavelength region.

Presented in Table 1 are the two-photon allowed transitions of Br in the range of 231.40-281.77 nm,
calculated using energies and term symbols reported by Moore [18]. By investigating this spectral region,
we observed a strong Br atom signal at 260.634 nm, which corresponds to the spin-forbidden
4p*sp 4D°3 n < 4p° 2P°3 1, transition (see Figure 2). Arepalli et al. [13] also found this transition to be
one of the most sensitive in the 240-285-nm spectral region. Although other Br excitation wavelengths
were observed, the transition at 260.634 nm proved to be the best for analytical measurements, primarily
because of the combined efficiencies of the dye and doubling crystal near 260 nm. It is interesting to note
that for analogous PF/LIF studies of chlorinated compounds, Jeffries et al. [9] employed a similar
transition at 233.290 nm, which corresponds to the spin-forbidden 3p44p 4S°3 n < 3p5 2P"3 1 transition
of C1 [9].

An estimate of the magnitude of the two-photon absorption cross section for the Br 4p45p 4D°3 n <
4p5 2P°3 1, transition is obtained by the following expression given by Mcllrath et al. [19]:

2
(2)(0)) - e 4 ] flfz (1)

88(2)])1 2C2 (‘01(‘02 (0)1 —(01)2 ’

where e is the electronic charge (C), m is the mass of the electron (kg), &, is the permittivity of free space
(CY(N m?)), c is the speed of light (m/s), @, (i = 1,2,]) is the angular frequency of the radiation (s1), and
f; i = 1,2) is the absorption oscillator strength of the strongest transitions between the appropriate states.
Substitution of the appropriate energies and oscillator strengths (f; = 0.199, £, = 0.513) into equation (1)
yields a value of 3.8 x 107 m*, For comparison, McIlrath et al. [9] have estimated the two-photon cross
section for O atoms at 226 nm as 7.0 x 107 m*. This value agrees well with those predicted by more
rigorous quantum mechanical methods, which include contributions from multiple intermediate states
[20,21]. Thus, the previous expression is an approximation that is effective when the two-photon cross

section is dominated by a single intermediate state. Lesser contributions by additional intermediate states




Table 1. Two-Photon Allowed Transitions of Br Atom

TRANSITION A (nm) TRANSITION A (nm)
4p0 2po 4n0 2n0
P, « 2P%,, 281.77 P ,, « 2P%,, 243.58
4poy, « 2P% 280.44 D%, « 2P% 243.52
Do, « 2P%) 277.76 Doy, « 2p° 243.15
4pol, & 2P% ), 277.31 D%, « 2P° ), 241.71
Doy, « 2P° ., 273.78 2pol’, « 2p% ), 239.33
4~0 2p0 2p0 2p0
D 1/2 P 1/2 268.87 P 1/2 &« P 1/2 238.64
ipos, « 2P%, 267.86 2poL ., « 2p%, 235.87
2po.,  «  2PO 267.31 2pol, « 2p% 235.66
1595/, & 2P/, 266.72 2p0 ., 2P%); 235.32
ipol), & 2p%5), 266.66 2p%5,, « 2P° 234.86
2pol ., « 2P ), 266.05 1595, & 2P% ), 234.57
2poS, <« 2p% ), 264.95 2p%: 5« 2P% ), 234.36
4pol,, « 2p%), 264.85 2501, « 2P% ), 234.04
Do, « 2p°5), 264.23 ipos, « 2p% ), 233.86
ip°l, « 2P, 263.83 ipoL,, « 2%, 233.70
2no 2p0 40 250
D 3/2 «— P 1/2 263.14 7/2 e P 3/2 233.22
2g0 2p0 450 2p0
S 1/2 <« P 1/2 262.55 P 1/2 «— P 3/2 233.12
4no 2n0 40 2p0
D%, ¢« 2P%); 260.63 D%/, « 2P%,, 233.06
D%, « 2p%5, 256.18 ipos,, « 2PO 232.95
20 2p0 40 2p0
D « ?p 254.76 D « ?%p 232.73
400572 ot 03/2 o0 03/2 e 5372
S°3/2 « 2P, 254.23 P, « 2P% ), 232.36
2p0 2p0 4p0 2p0
PO, & 2P°5); 253.62 PO, & 2P% 232.30
2po 2po 2o 2po
PO, « 2P% 252.62 D%, ¢ 2P% ), 232.28
210 2p0 2n0 2po0
D%/, ¢ 2P 250.98 D%/, ¢ 2P% 5 232.10
25917, « 2P%3,, 250.43 2pol s« 2p%), 231.98
ipo:,, « 2P% 244.39 P01, « 2P° ), 231.87
pol, « 2p°,, 244.22 pol), & ?2pP°;, 231.40

are best accounted for by explicit quantum mechanical approaches, although such calculations require

extensive computational capabilities.

The units of 00(2)((0) is in m* and are related to the generalized cross section by a normalized
lineshape function, & [19,20]. In the limit of a relatively broad laser profile, the line shape function is
dominated by the laser bandwidth and is simply 1/(8w,..) [19]. For our system, the frequency doubled
bandwidth (fwhm) of the laser is approximately 0.11 cm™ (1 cm™! = 2.998 x 101° s™1), yielding a value
of the generalized cross section, 0(2)(0)), of 1.8 x 1074 cm®s at 260.634 nm.

The two-photon absorption transition rate, R, (™Y, is given by the following expression:

R, ™ = 6% - 17, )



where 0(2)((0) is the generalized two-photon absorption cross section (cm"'s), and / is the laser intensity
(photons/(cmzs)). Using typical values of laser energy (100 pJ) and pulsewidth (10 ns), we estimate that
the photon flux in the probe region at 260 nm is 1.0 x 10%7 photons/cmzs. For a cross section of
1.8 x 107 cm® and a photoionization cross section of approximately 10718 cm?, the estimated two-
photon excitation rate and photoionization rate are both on the order of 10° s™1, which is also the order
of the radiative and nonradiative decay rates for Br atoms at 100 Torr (current experimental conditions).
While neither the absorption or photoionization processes is likely to be completely saturated at this laser
intensity, the rates should be sufficient to realize good sensitivity for ionization and fluorescence detection

approaches.

Employing two-photon excitation of Br atoms at 260.634 nm, a comparison study of ionization,
fluorescence and SE detection techniques has been performed. This is the first time these three methods
have been applied to the detection of Br atoms in the same study. It is also the first time that SE of Br
has been reported. We verified that the observed emission was SE by the fact that the emission appeared
to have an intensity threshold, was coherent in its propagation (as determined by its constant measured
intensity both close to and away from the cell), and was much stronger than the isotropically emitted LIF
(nearly two orders of magnitude greater when normalized for the observed solid angle). Further evidence
that the observed emission was SE was the negligible emission observed at 751 nm, as compared to
844 nm. While both transitions originate from the same Sp 4D°3,2 state, only the 844-nm line showed
significant SE emission. As the lower state of the transition at 751 nm is the lowest of the “P multiplet,
establishing and maintaining a population inversion with this state is less probable due to collisional decay
to the state from other states, which spoils the gain. Similar effects have been observed in the SE profile
of Cl1 [10]. SE to the 5s 4P1 1o State of Br at 1014.3 nm was not verified due to the limited response of
the PMT.

Figure 3 shows several spectral scans of the transition at 260.634 nm as observed when using CH;Br
as the precursor species for Br and PF/REMPI detection. The dependence of the signal magnitude on the
laser intensity is nonlinear suggesting that increases in the laser intensity could lead to significant increases
in the Br ionization signal. As the excitation of the Br atoms is a 2+1 REMPI process, the power
dependence might be expected to be as high as 4. A plot of the Br ion signal (generated from CH;Br)
as a function of the laser intensity at 260.634 nm reveals a power dependence of 1.5, indicating the
possible saturation of at least one of the photoexcitations of the precursor molecule and/or the Br fragment.

Partial saturation of the ionization is consistent with our estimations of the excitation rates, as the
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Figure 3. ;_l;agmentation ionization spectra of CH,Br near 260.6 nm showing the spin-forbidden 4p*sp
D, « 4p° “P°, , transition of Br. The spectra (from bottom to top) correspond to incident
laser intensities of 1.2, 1.9, 3, 4.1 and 4.9 x 10° W/cm®. The baseline of the spectra are offset

for clarity.

excitation and radiative deexcitation rates are comparable. A power dependence study of 1.5 was also
observed by PF/LIF, which similarly indicates partial saturation of one of the photoexcitations of the
PF/LIF processes.

Close inspection of the spectra in Figure 3 does not reveal significant broadening of the excitation
profile lineshape with laser intensity. The linewidth at the highest laser energy is approximately
0.0016 nm (when corrected for the laser bandwidth) and is relatively constant over the intensities
employed. Lack of broadening indicates that saturation of the two-photon absorption is not significant
and that modest increases in the laser intensity could lead to enhanced sensitivities, although higher laser
intensities will only be advantageous if they result in an enhanced signal-to-noise ratio.

A study of the pressure dependence of the excitation profiles observed using REMPI, LIF, and SE is
shown in Figure 4. Profiles were obtained at pressures of 100 Torr and 1 atm. In the case of each

technique, the profile is broadened at 1 atm. The broadening is greatest for the ionization and least for

10




the exponential gain of the medium, which leads to a spectral narrowing of the profile [22]. The reason

the SE profiles. The narrowness of the SE profile relative to the LIF and ionization is expected due to
‘ for the difference in the widths of the LIF and ionization profiles is as yet unknown.

REMPI
" i
(760 Torr)

LIF
E
D ASE

(100 Torr)
C REMPI
B LIF
il uE
! 1

T I |
260.625 260.630 260.635 260.640 260.645

WAVELENGTH (nm)

Figure 4. Normalized excitation profiles of Br atom (generated from CHCIBr,) at 100 Torr and 760 Torr
for PF/REMPI (heavy line), PF/LIF (medium line), and PF/SE (light line).
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Shown in Figure 5 are the signal dependencies for the SE, LIF, and ionization techniques as functions
of the total cell pressure. It is important to note that for each pressure indicated in the figure, the mixing
ratio of sample is constant, that is, the sample (analyte) density changes with the pressure. It is observed
that increased pressures reduce the sensitivities, although pressure influences the individual techniques
differently. In the case of ionization, the signal is at a maximum at relatively low pressures (near 50 Torr)
and then falls rapidly at higher pressures. This behavior is believed to be due to combined effects of
quenching and transfer losses of the ions/electrons to the collection electrodes at higher pressures [15].
In the cases of LIF and SE, it is seen that the pressure dependencies of these two techniques are similar,
although the SE signal shows a steeper rise at lower pressures and faster decay at higher pressure than the
LIF. The different pressure dependencies for LIF and SE are related to the effects of collisions on the SE

lineshape, where increased collisions broaden the linewidth and reduce the gain [22].

1004 © o . ° i
° e LIF (o)

> 80+ ° o o
Q) v VO 4 (0]
L5 . ASE (o)
Ei: 604 v -
= REMPI (v)
=
Z 5 v

20 - o -

v v
0 +— - ML

0 100 200 300 400 500 600 700 800
PRESSURE (Torr)

Figure 5. Pressure dependence of normalized signals for PE/REMPI (open inverted triangles), PF/LIF
(filled circles) and PF/SE (open circles) techniques.

Further studies were performed to evaluate the analytical capabilities of the REMPI, LIF, and SE

techniques for detecting brominated compounds in the gas phase. Measurement conditions were 100 Torr
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total pressure and laser energies ranging from 75 to 200 pJ at 260 nm. Estimates of the limits of detection
(equal to 30) were determined for CH;Br, CHBr,, and CHCIBr, and are given in Table 2. Noise (o) in
this study is defined as the standard deviation of 16 independent measurements of the background signal
in N, measured off resonance at 260.64 nm. Sensitivities were inferred from signals measured for a single
concentration using mixtures containing approximately 10 ppm of the specified compound in N,, except
for the SE where approximately 500 ppm mixtures were used. As the sensitivity was evaluated from a
single concentration, considerable uncertainty may be associated with the absolute values given in Table 2.
However, since the REMPI, LIF, and SE techniques were evaluated in the same study under the same
conditions, the data in Table 2 are very useful for making relative comparisons of the three techniques.

Table 2. Estimated Limits of Detection for Brominated Compounds

PF/REMPI PF/LIF PF/SE

(ppb) (ppb) (ppm)
CH,Br 130 — —
CHBr, 2.5 350 20
CHCIBr, 2.2 250 10

As shown in Table 2, high sensitivities (LODs in the ppb) were observed using the PF/REMPI
technique for CHCIBr,, CHBr;, and CH,Br, with the first two compounds having a sensitivity of
approximately 60 times greater than the last. Apparently, the efficiency in the photodissociation pathways
leading to the formation of Br is higher for CH;Br and CHCIBr, than for CHBr;. In addition, the
stoichiometry favors the production of more Br atoms on a per mole-atom basis for CHCIBr, and CHBr
than the singly substituted CH;Br. As a comparison of our PF/REMPI results, Arepalli et al. [13] have
also used this technique and estimated an LOD of 0.4 ppb for Br atoms as generated from HBr and other
compounds. It should be noted, however, that the HBr (and other species) was sampled in pure form and
at much lower pressures (mTorr) than were used in the present studies and extrapolation of their results
to dilute samples in a buffer gas matrix is difficult. Nonetheless, in both studies the absolute number of
Br atoms detected at the LOD are very similar (on the order of 104—106).

Table 2 also reveals that the sensitivities obtained from the PF/REMPI approach are two and four
orders of magnitude greater than the LIF and SE techniques, respectively. The high sensitivity achieved




using the PF/REMPI approach demonstrates the strong potential of the method, and suggests the approach
will be most effective when efficient fragmentation of the parent molecule is assured. This may only be
possible by using a separate fragmentation source, that is, a dual laser approach [9]. The REMPI approach
is, however, susceptible to high background noise as well as the highest degree of interference (due to
nonresonant multiphoton ionization). It should be possible to eliminate all the ionization interferences by
employing mass spectrometric detection, except those which are also isobaric. Laser photoionization/mass
spectrometry has already been demonstrated by Cool and coworkers [7] as an effective method for
monitoring complex sample environments. However, due to the limited sample throughput of most mass
spectrometers, these systems may suffer lower sensitivity, which would limit their applicability to sample

environments that require mass selectivity.

The PF/LIF approach as implemented here has lower sensitivity relative to PF/REMPI, as shown in
Table 2. This difference in sensitivity results primarily from the high background and laser scatter
inherent in these PF/LIF measurements, and is not necessarily characteristic of the technique. The
analytical capability of this approach can be improved, however, by better system design. For example,
the use of a PMT with greater sensitivity in the near IR, the addition of light baffles, signal collection
optics, and/or spectrometers.

As shown in Table 2, the PF/SE technique has the lowest sensitivity, yet it also has a strong analytical
potential. Unlike REMPI and LIF, the background noise of the SE approach is low and can be made even
lower with appropriate shielding of the detector. Furthermore, since the signal is coherent and the
background emission is incoherent, increasing the laser intensity to saturation conditions should greatly
enhance the sensitivity without compromising the signal-to-noise ratio. This is an important contrast
between the SE and LIF-REMPI techniques. LIF and REMPI already suffer from significantly higher
background signals at the laser intensities used in these studies; thus, any further increases in the intensity
are not likely to improve the signal-to-noise ratio for either of the two techniques. The sensitivity of the
SE technique may by enhanced by using a longer focal length lens to increase the gain length. In addition
to also providing strong optical signals, the SE technique has other attributes that are unique due to its
coherent nature [22]. Even though the SE signal is coaxial with the laser, it can be easily separated with
filters or pﬁéms, and, since it is bidirectional, it only requires "one-window access" to the sample
environment {10,22]. This has important implications for accessing remote or hostile environments and
also for coupling to fiber optic probes. For these reasons, it is believed that the SE technique has great
potential utility for Br atom monitoring applications.
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4. CONCLUSIONS

Laser-induced photofragmentation/fragment spectrometry at 260.634 nm using ionization, fluorescence
and stimulated emission techniques have been employed to detect brominated compounds under ambient
conditions. These techniques have been evaluated as to their relative analytical capabilities for trace level
determinations. SE of Br atoms at 844 nm is reported for the first time and its merits as an analytical
technique have been considered. It is anticipated that SE will have several advantages over conventional
methods for rapid and convenient measurements of ppm levels of Br atoms in gaseous environments. In
the present studies, the PF/REMPI technique is demonstrated as having the highest sensitivity with
estimated LODs for CHBr; and CHCIBr, in the low ppb range. Limits of detection for the LIF and SE

approaches are somewhat higher and in the ppm range for the same compounds.
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